58 research outputs found

    Conditionally invariant solutions of the rotating shallow water wave equations

    Get PDF
    This paper is devoted to the extension of the recently proposed conditional symmetry method to first order nonhomogeneous quasilinear systems which are equivalent to homogeneous systems through a locally invertible point transformation. We perform a systematic analysis of the rank-1 and rank-2 solutions admitted by the shallow water wave equations in (2 + 1) dimensions and construct the corresponding solutions of the rotating shallow water wave equations. These solutions involve in general arbitrary functions depending on Riemann invariants, which allow us to construct new interesting classes of solutions.Comment: 23 pages, 2 figure

    On Classification of Integrable Davey-Stewartson Type Equations

    Get PDF
    This paper is devoted to the classification of integrable Davey-Stewartson type equations. A list of potentially deformable dispersionless systems is obtained through the requirement that such systems must be generated by a polynomial dispersionless Lax pair. A perturbative approach based on the method of hydrodynamic reductions is employed to recover the integrable systems along with their Lax pairs. Some of the found systems seem to be new

    Conditional Symmetries and Riemann Invariants for Hyperbolic Systems of PDEs

    Get PDF
    This paper contains an analysis of rank-k solutions in terms of Riemann invariants, obtained from interrelations between two concepts, that of the symmetry reduction method and of the generalized method of characteristics for first order quasilinear hyperbolic systems of PDEs in many dimensions. A variant of the conditional symmetry method for obtaining this type of solutions is proposed. A Lie module of vector fields, which are symmetries of an overdetermined system defined by the initial system of equations and certain first order differential constraints, is constructed. It is shown that this overdetermined system admits rank-k solutions expressible in terms of Riemann invariants. Finally, examples of applications of the proposed approach to the fluid dynamics equations in (k+1) dimensions are discussed in detail. Several new soliton-like solutions (among them kinks, bumps and multiple wave solutions) have been obtained

    Elliptic solutions of isentropic ideal compressible fluid flow in (3 + 1) dimensions

    Get PDF
    A modified version of the conditional symmetry method, together with the classical method, is used to obtain new classes of elliptic solutions of the isentropic ideal compressible fluid flow in (3+1) dimensions. We focus on those types of solutions which are expressed in terms of the Weierstrass P-functions of Riemann invariants. These solutions are of special interest since we show that they remain bounded even when these invariants admit the gradient catastrophe. We describe in detail a procedure for constructing such classes of solutions. Finally, we present several examples of an application of our approach which includes bumps, kinks and multi-wave solutions

    Deterministic and stochastic models of Arabidopsis Thaliana flowering

    Get PDF
    Experimental studies of the flowering of Arabidopsis Thaliana have shown that a large complex gene regulatory network (GRN) is responsible for its regulation. This process has been mathematically modelled with deterministic differential equations by considering the interactions between gene activators and inhibitors [26, 28]. However, due to complexity of the model, the properties of the network and the roles of the individual genes cannot be deducted from the numerical solution the published work offers. Here, we propose simplifications of the model, based on decoupling of the original GRN to motifs, described with three and two differential equations. A stable solution of the original model is sought by linearisation of the original model which contributes to further investigation of the role of the individual genes to the flowering. Furthermore, we study the role of noise by introducing and investigating two types of stochastic elements into the model. The deterministic and stochastic non-linear dynamic models of Arabidopsis flowering time are considered by following the deterministic delayed model introduced in [26]. Steady state regimes and stability of the deterministic original model are investigated analytically and numerically. By decoupling some concentrations, the system was reduced to emphasise the role played by the transcription factor Suppressor of Overexpression of Constants1 (SOC1) and the important floral meristem identity genes, Leafy (LFY ) and Apetala1 (AP1). Two-dimensional motifs, based on the dynamics of LFY and AP1, are obtained from the reduced network and parameter ranges ensuring flowering are determined. Their stability analysis shows that LFY and AP1 are regulating each other for flowering, matching experimental findings. New sufficient conditions of mean square stability in the stochastic model are obtained using a stochastic Lyapunov approach. Our numerical simulations demonstrate that the reduced models of Arabidopsis flowering time, describing specific motifs of the GRN, can capture the essential behaviour of the full system and also introduce the conditions of flowering initiation. Additionally, they show that stochastic effects can change the behaviour of the stability region through a stability switch. This study thus contributes to a better understanding of the role of LFY and AP1 in Arabidopsis flowering

    Mathematical investigation of diabetically impaired ultradian oscillations in the glucose-insulin regulation

    Get PDF
    We study the effect of diabetic deficiencies on the production of an oscillatory ultradian regime using a deterministic nonlinear model which incorporates two physiological delays. It is shown that insulin resistance impairs the production of oscillations by dampening the ultradian cycles. Four strategies for restoring healthy regulation are explored. Through the introduction of an instantaneous glucose-dependent insulin response, explicit conditions for the existence of periodic solutions in the linearised model are formulated, significantly reducing the complexity of identifying an oscillatory regime. The model is thus shown to be suitable for representing the effect of diabetes on the oscillatory regulation and for investigating pathways to reinstating a physiological healthy regime

    Amplitude and frequency variation in nonlinear glucose dynamics with multiple delays via periodic perturbation

    Get PDF
    Characterising the glycemic response to a glucose stimulus is an essential tool for detecting deficiencies in humans such as diabetes. In the presence of a constant glucose infusion in healthy individuals, it is known that this control leads to slow oscillations as a result of feedback mechanisms at the organ and tissue level. In this paper, we provide a novel quantitative description of the dependence of this oscillatory response on the physiological functions. This is achieved through the study of a model of the ultradian oscillations in glucose-insulin regulation which takes the form of a nonlinear system of equations with two discrete delays. While studying the behaviour of solutions in such systems can be mathematically challenging due to their nonlinear structure and non-local nature, a particular attention is given to the periodic solutions of the model. These arise from a Hopf bifurcation which is induced by an external glucose stimulus and the joint contributions of delays in pancreatic insulin release and hepatic glycogenesis. The effect of each physiological subsystem on the amplitude and period of the oscillations is exhibited by performing a perturbative analysis of its periodic solutions. It is shown that assuming the commensurateness of delays enables the Hopf bifurcation curve to be characterised by studying roots of linear combinations of Chebyshev polynomials. The resulting expressions provide an invaluable tool for studying the interplay between physiological functions and delays in producing an oscillatory regime, as well as relevant information for glycemic control strategies

    Solutions de rang k et invariants de Riemann pour les systèmes de type hydrodynamique multidimensionnels

    Full text link
    Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.In this work, the conditional symmetry method is adapted in order to construct solutions expressed in terms of Riemann invariants. Nonelliptic quasilinear homogeneous systems of multidimensional partial differential equations of hydrodynamic type are considered. A detailed description of the necessary and sufficient conditions for the local existence of these types of solutions is given. The relationship between the structure of integral elements and the possibility of constructing certain classes of rank-k solutions is discussed. These classes of solutions include nonlinear superpositions of Riemann waves and multisolitonic solutions. This approach is generalized to first-order inhomogeneous hyperbolic quasilinear systems. These methods are applied to the equations describing an isentropic fluid flow in (3+1) dimensions. Several new classes of rank-2 and rank-3 solutions are obtained which contain double and triple solitonic solutions. New nonlinear and linear superpositions of Riemann waves are described. Finally, certain aspects of the construction of rank-2 solutions through an application to the dispersionless Kadomtsev-Petviashvili equation are discussed

    Ultradian rhythms in glucose regulation: A mathematical assessment

    Get PDF
    Glucose regulation is an essential function of the human body which enables energy to be effectively utilized by the brain, organs and muscles. This regulation operates in a cyclic manner, in different periodic regimes. Indeed, ultradian rhythms with a period of 70 to 150 minutes have been clinically observed in healthy patients under various glucose stimulation patterns. Various models of these oscillations in plasma glucose and insulin have shown that the presence of two delays in hepatic glycogenesis and pancreatic insulin secretion provide a pathway for explaining these oscillations. The efficacy of this control is typically reduced in the presence of diabetes. In this contribution, we adopt the presence and the accurate tuning of ultradian rhythms as a criterion for healthy glucose regulation. We then investigate a model with two delays of these ultradian rhythms which incorporates parameters accounting for insulin sensitivity and insulin secretion. Additionally, the effect of diabetic deficiencies on this feedback loop is explored by quantifying the joint contribution of delays and diabetic parameters on the limit cycle of this model, which is generated through a Hopf bifurcation. Strategies for restoring an oscillatory regime in a physiologically appropriate range are discussed. Finally, a simple polynomial model of the oscillations is introduced to give further insight into the influence of each physiological subsystem. The approach provides a quantified relationship between diabetic impairments and the plasma glucose-insulin feedback loop

    Mathematical modelling of glucose dynamics

    Get PDF
    The accurate regulation of glucose within humans is an essential feature of homeostasis. It optimises energy release in the muscles and organs. Glucose rhythms driven by internal and external stimuli have been physiologically observed in humans and modelled mathematically to provide a solid framework for understanding these processes in a qualitative and quantitative manner. In this paper, we review the latest contribution of mathematical modelling to the understanding and prediction of dynamics within the glucose regulation system
    corecore